Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomater Sci ; 11(18): 6280-6286, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37548917

RESUMO

Stimuli-responsive transformable biomaterials development can be manipulated practically by fine-tuning the built-in molecular design of their structural segments. Here, we demonstrate a peptide assembly by the bola-type amphiphilic polypeptide, glycolic acid-polysarcosine (PSar)13-b-(L-Leu-Aib)6-b-PSar13-glycolic acid (S13L12S13), which shows morphological transformations between hydrophilic chain-driven and hydrophobic unit-driven morphologies. The hydrophobic α-helical unit (L-Leu-Aib)6 precisely controls packing in the hydrophobic layer of the assembly and induces tubule formation. The densified, hydrophilic PSar chain on the assembly surface becomes slightly more hydrophobic as the temperature increases above 70 °C, starting to disturb the helix-helix interaction-driven formation of tubules. As a result, the S13L12S13 peptide assembly undergoes a reversible vesicle-nanotube transformation following a time course at room temperature and a heat treatment above 80 °C. Using membrane fluidity analysis with DPH and TMA-DPH and evaluating the environment surrounding the PSar side chain with NMR, we clarify that the vesicle was in a kinetically stable state driven by the dehydrated PSar chain, while the nanotube was in a thermodynamically stable state.


Assuntos
Glicolatos , Peptídeos , Peptídeos/química , Sarcosina/química
2.
Int J Nanomedicine ; 18: 1577-1595, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007986

RESUMO

Purpose: The research objective is to design intranasal brain targeted CLZ loaded lecithin based polymeric micelles (CLZ- LbPM) aiming to improve central systemic CLZ bioavailability. Methods: In our study, intranasal CLZ loaded lecithin based polymeric micelles (CLZ- LbPM) were formulated using soya phosphatidyl choline (SPC) and sodium deoxycholate (SDC) with different CLZ:SPC:SDC ratios via thin film hydration technique aiming to enhance drug solubility, bioavailability and nose to brain targeting efficiency. Optimization of the prepared CLZ-LbPM using Design-Expert® software was achieved showing that M6 which composed of (CLZ:SPC: SDC) in respective ratios of 1:3:10 was selected as the optimized formula. The optimized formula was subjected to further evaluation tests as, Differential Scanning Calorimetry (DSC), TEM, in vitro release profile, ex vivo intranasal permeation and in vivo biodistribution. Results: The optimized formula with the highest desirability exhibiting (0.845), small particle size (12.23±4.76 nm), Zeta potential of (-38 mV), percent entrapment efficiency of > 90% and percent drug loading of 6.47%. Ex vivo permeation test showed flux value of 27 µg/cm².h and the enhancement ratio was about 3 when compared to the drug suspension, without any histological alteration. The radioiodinated clozapine ([131I] iodo-CLZ) and radioiodinated optimized formula ([131I] iodo-CLZ-LbPM) were formulated in an excellent radioiodination yield more than 95%. In vivo biodistribution studies of [131I] iodo-CLZ-LbPM showed higher brain uptake (7.8%± 0.1%ID/g) for intranasal administration with rapid onset of action (at 0.25 h) than the intravenous formula. Its pharmacokinetic behavior showed relative bioavailability, direct transport percentage from nose to brain and drug targeting efficiency of 170.59%, 83.42% and 117% respectively. Conclusion: The intranasal self-assembling lecithin based mixed polymeric micelles could be an encouraging way for CLZ brain targeting.


Assuntos
Clozapina , Micelas , Radioisótopos do Iodo , Clozapina/metabolismo , Lecitinas , Distribuição Tecidual , Sistemas de Liberação de Medicamentos/métodos , Administração Intranasal , Encéfalo , Mucosa Nasal/metabolismo , Polímeros/química , Tamanho da Partícula , Portadores de Fármacos/química
3.
AAPS PharmSciTech ; 24(2): 66, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36788150

RESUMO

The human eye is a sophisticated organ with distinctive anatomy and physiology that hinders the passage of drugs into targeted ophthalmic sites. Effective topical administration is an interest of scientists for many decades. Their difficult mission is to prolong drug residence time and guarantee an appropriate ocular permeation. Several ocular obstacles oppose effective drug delivery such as precorneal, corneal, and blood-corneal barriers. Routes for ocular delivery include topical, intravitreal, intraocular, juxtascleral, subconjunctival, intracameral, and retrobulbar. More than 95% of marketed products exists in liquid state. However, other products could be in semi-solid (ointments and gels), solid state (powder, insert and lens), or mixed (in situ gel). Nowadays, attractiveness to nanotechnology-based carries is resulted from their capabilities to entrap both hydrophilic and lipophilic drugs, enhance ocular permeability, sustain residence time, improve drug stability, and augment bioavailability. Different in vitro, ex vivo, and in vivo characterization approaches help to predict the outcomes of the constructed nanocarriers. This review aims to clarify anatomy of the eye, various ocular diseases, and obstacles to ocular delivery. Moreover, it studies the advantages and drawbacks of different ocular routes of administration and dosage forms. This review also discusses different nanostructured platforms and their characterization approaches. Strategies to enhance ocular bioavailability are also explained. Finally, recent advances in ocular delivery are described.


Assuntos
Córnea , Sistemas de Liberação de Medicamentos , Humanos , Administração Oftálmica , Administração Tópica , Permeabilidade
4.
Drug Deliv ; 30(1): 2179129, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36788709

RESUMO

This review aims to comprehensively highlight the recent nanosystems enclosing Fenticonazole nitrate (FTN) and to compare between them regarding preparation techniques, studied factors and responses. Moreover, the optimum formulae were compared in terms of in vitro, ex vivo and in vivo studies in order to detect the best formula. FTN is a potent antifungal imidazole compound that had been used for treatment of many dangerous fungal infections affecting eye, skin or vagina. FTN had been incorporated in various innovative nanosystems in the recent years in order to achieve significant recovery such as olaminosomes, novasomes, cerosomes, terpesomes and trans-novasomes. These nanosystems were formulated by various techniques (ethanol injection or thin film hydration) utilizing different statistical designs (Box-Behnken, central composite, full factorial and D-optimal). Different factors were studied in each nanosystem regarding its composition as surfactant concentrations, surfactant type, amount of oleic acid, cholesterol, oleylamine, ceramide, sodium deoxycholate, terpene concentration and ethanol concentration. Numerous responses were studied such as percent entrapment efficiency (EE%), particle size (PS), poly-dispersity index (PDI), zeta potential (ZP), and in vitro drug release. Selection of the optimum formula was based on numerical optimization accomplished by Design-Expert® software taking in consideration the largest EE %, ZP (as absolute value) and in vitro drug release and lowest PS and PDI. In vitro comparisons were done employing different techniques such as Transmission electron microscopy, pH determination, effect of gamma sterilization, elasticity evaluation and docking study. In addition to, ex vivo permeation, in vivo irritancy test, histopathological, antifungal activity and Kinetic study.


Assuntos
Antifúngicos , Sistemas de Liberação de Medicamentos , Ratos , Animais , Feminino , Sistemas de Liberação de Medicamentos/métodos , Antifúngicos/farmacologia , Administração Cutânea , Nitratos , Ratos Wistar , Imidazóis , Tensoativos/química , Tamanho da Partícula , Portadores de Fármacos
5.
Drug Deliv ; 29(1): 2945-2958, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36073061

RESUMO

The aim of this study was to formulate and boost ocular targeting of Fenticonazole Nitrate (FTN)-loaded olaminosomes in order to improve drug corneal permeation and candidiasis treatment. Olaminosomes were formulated by ethanol injection technique applying a central composite design. The independent variables were: span 80 amount (mg) (A), oleylamine concentration (mg%) (B) and oleic acid: drug ratio (C). The dependent responses were: percent entrapment efficiency (EE %), particle size (PS), poly-dispersity index (PDI), zeta potential (ZP) and in vitro drug release after 10 hours (Q10h). Numerical optimization by Design-Expert® software was adopted to select the optimum formula. This formula was chosen based on highest EE %, ZP (as absolute value) and Q10h and lowest PS and PDI. The optimum formula was subjected to further in vitro characterization via Differential scanning calorimetry, Transmission electron microscopy, Fourier transform infrared spectroscopy, pH determination, effect of storage, influence of terminal sterilization, detection of Minimal Inhibitory Concentration and ex vivo corneal penetration analysis. Safety and antifungal activity of the optimum formula were tested through various in vivo studies like ocular irritancy, corneal tolerance, corneal uptake and susceptibility test. The optimum formula with the maximum desirability value (0.972) revealed EE% (84.24%), PS (117.55 nm), ZP (-74.85 mV) and Q10h (91.26%) respectively. The optimum formula demonstrated ocular tolerance with enhanced corneal penetration behavior (428.66 µg/cm2) and boosted antifungal activity (56.13%) compared to FTN suspension (174.66 µg/cm2 and 30.83%). The previous results ensured the ability of olaminosomes to enhance the corneal penetration and antifungal efficacy of Fenticonazole Nitrate.


Assuntos
Candidíase , Infecções Oculares Fúngicas , Administração Oftálmica , Antifúngicos/farmacologia , Candidíase/tratamento farmacológico , Infecções Oculares Fúngicas/tratamento farmacológico , Humanos , Nitratos
6.
Drug Deliv ; 29(1): 2428-2441, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35880688

RESUMO

The purpose of this manuscript was to develop and optimize Fenticonazole Nitrate (FTN)-loaded novasomes aiming to enhance drug corneal penetration and to improve its antifungal activity. Ethanol injection was used to formulate FTN-loaded novasomes adopting a central composite design. The researched factors were: stearic acid concentration (g%) (A), span 80: drug ratio (B) and cholesterol amount (mg) (C), and their effects on percent entrapment efficiency (EE%), particle size (PS), poly-dispersity index (PDI), zeta potential (ZP), and in vitro drug release after 8 hours (Q8h) were studied. Numerical optimization by Design-Expert® software was employed to select the optimum formula in respect to highest EE%, ZP (as absolute value), and Q8h >80% and lowest PS and PDI. Additional evaluation of the optimum formula was accomplished by short term stability study, effect of gamma sterilization, determination of Minimal Inhibitory Concentration and ex vivo corneal permeation study. The in vivo evaluation of the optimum formula was done to ensure its safety via in vivo ocular irritancy and in vivo corneal tolerance studies. Also, the efficacy was confirmed through in vivo corneal uptake study and susceptibility test. The optimum formula with the highest desirability value (0.738) showed EE% (94.31%), PS (197.05 nm), ZP (-66.95 mV) and Q8h (85.33%). It revealed to be safe, with augmented corneal permeation (527.98 µg/cm2) that leads to higher antifungal activity. The above results confirmed the validity of novasomes to improve the corneal permeation and antifungal activity of Fenticonazole Nitrate.


Assuntos
Candidíase , Infecções Oculares Fúngicas , Antifúngicos/farmacologia , Portadores de Fármacos , Infecções Oculares Fúngicas/tratamento farmacológico , Humanos , Imidazóis , Nitratos , Tamanho da Partícula
7.
Drug Deliv ; 28(1): 1524-1538, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34266360

RESUMO

The research objective is to design intranasal (IN) brain targeted CLZ-loaded polymeric nanomicellar systems (PNMS) aiming to improve central systemic CLZ bioavailability. Direct equilibrium method was used to prepare CLZ-PNMS using two hydrophobic poloxamines; Tetronic® 904 (T904) and Tetronic® 701 (T701) and one hydrophilic poloxamer; Synperonic® PE/F127 (F127). Optimization is based on higher percent transmittance, solubilizing efficiency, and in vitro release after 24 h with smaller particle size was achieved using Design-Expert® software. The optimized formula was further evaluated via TEM, ex vivo nasal permeation in addition to in vivo biodistribution using radiolabeling technique of the optimized formula by Technetium-99m (99mTc). The optimized formula M5 has small size (217 nm) with relative high percentage of transmittance (97.72%) and high solubilization efficacy of 60.15-fold following 92.79% of CLZ released after 24 h. Ex vivo nasal permeation showed higher flux of 36.62 µg/cm2.h compared to 7.324 µg/cm2.h for CLZ suspension with no histological irritation. In vivo biodistribution results showed higher values of radioactivity percentage of the labeled optimized formula (99mTc-M5) in brain and brain/blood ratio following IN administration of 99mTc-M5 complex which were greater than their corresponding values following intravenous route. It is obvious that nasal delivery of CLZ-PNMS could be a promising way to improve central systemic CLZ bioavailability.


Assuntos
Antipsicóticos/administração & dosagem , Antipsicóticos/farmacocinética , Encéfalo/metabolismo , Clozapina/administração & dosagem , Clozapina/farmacocinética , Esquizofrenia/tratamento farmacológico , Administração Intranasal , Química Farmacêutica , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Interações Hidrofóbicas e Hidrofílicas , Micelas , Nanopartículas/química , Mucosa Nasal/metabolismo , Tamanho da Partícula , Poloxâmero/química , Solubilidade , Tecnécio
8.
Drug Deliv ; 28(1): 293-305, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33509004

RESUMO

The aim of this work is to survey the potential of cubogel as an ocular dosage form to boost the corneal permeability of Dorzolamide Hydrochloride DZ; an antiglaucomal drug. DZ-loaded cubosomal dispersions were prepared according to Box-Behnken design, where the effect of independent variables; Monoolein MO concentration (2.5, 5 and 7.5%w/w), Pluronic® F127 concentration (0.25, 0.5 and 0.75%w/w) and magnetic stirrer speed of (400, 800 and 1200 rpm) was studied on PS (nm), Zp (-mV) and Q 2 h (%) respectively. The prepared formulae were characterized via drug content DC (%), particle size PS (nm), polydispersity index PDI, zeta potential Zp (-mV), in-vitro drug release (Q 2 h%) and finally TEM. The optimized formulation composed of: 6.13% w/w of MO, 0.75% w/w of F127 and prepared at 1200 rpm stirring speed was chosen based on the criteria of minimum PS (nm), maximum Zp (-mV) and minimum Q 2 h (%). Results revealed that the optimum formula showed PS of 153.3 ± 8.4 n, Zp of 32 ± 3 -mV and 37.78 ± 1.3% released after 2 h. Carbopol 934 (1% w/v) as gelling agent was used to prepare the optimum cubogel, which was further evaluated by DSC, ex-vivo permeation and stability studies at 4 °C for three months. Moreover, in vivo studies of the optimized cubogel include; draize test, histological examination, confocal laser scanning microscopy (CLSM) and intraocular pressure (IOP) measurement. Results revealed that the optimized cubogel was considerably safe, stable and competent to corneal delivery as assured by draize and histological examination. CLSM showed a deeper penetration of more than 2.5-fold. A higher bioavailability (288.24 mg. h/ml) was attained from cubogel compared to the market product Trusopt® eye drops (115.40 mg. h/ml) following IOP measurement. Therefore, DZ-loaded cubogel could be considered as promising delivery system to boost the transcorneal permeation hence corneal bioavailability of DZ as antiglaucomal drug.


Assuntos
Géis/farmacologia , Glaucoma/tratamento farmacológico , Soluções Oftálmicas/farmacologia , Animais , Disponibilidade Biológica , Córnea/efeitos dos fármacos , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos/efeitos dos fármacos , Glicerídeos/química , Masculino , Tamanho da Partícula , Permeabilidade/efeitos dos fármacos , Poloxâmero/química , Coelhos , Sulfonamidas/farmacologia , Tiofenos/farmacologia
9.
Int J Nanomedicine ; 15: 9783-9798, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33324052

RESUMO

PURPOSE: The goal of this research was to enhance the transdermal delivery of lornoxicam (LX), using nanovesicular carriers composed of the bile salt sodium deoxycholate (SDC), soybean phosphatidyl choline (SPC) and a permeation enhancer limonene. METHODS: Thin-film hydration was the technique employed for the fabrication using a Box-Behnken design with three central points. The investigated factors were SPC molar concentration, SDC amount in mg and limonene percentage (%). The studied responses were percent entrapment efficiency (%EE), particle size (PS), polydispersity index (PDI), zeta potential (ZP), and in vitro drug release (after 2, 10 h). In order to obtain the optimum formula, numerical optimization by Design-Expert® software was used. Electing the optimized bilosomal formula was based on boosting %EE, ZP (as absolute value) and in vitro drug release, taking in consideration diminishing PS and PDI. Further assessment of the selected formula was achieved by transmission electron microscopy (TEM), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), stability testing, ex vivo skin permeation and deposition. The in vivo pharmacodynamics activities of the optimized formula were examined on male rats and mice and compared to that of the oral market product. RESULTS: The optimized bilosomal formula demonstrated to be nonirritant, with noticeably enhanced anti-inflammatory and antinociceptive activities. Superior in vivo permeation was proved by confocal laser scanning microscopy (CLSM). CONCLUSION: The outcomes demonstrated that bilosomes could improve transdermal delivery of lornoxicam.


Assuntos
Lipossomos/química , Nanoestruturas/química , Piroxicam/análogos & derivados , Administração Cutânea , Animais , Liberação Controlada de Fármacos , Masculino , Camundongos , Tamanho da Partícula , Permeabilidade , Piroxicam/administração & dosagem , Piroxicam/química , Piroxicam/metabolismo , Ratos , Ratos Wistar , Pele/metabolismo
10.
AAPS PharmSciTech ; 21(3): 87, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-32016607

RESUMO

This study aims to evaluate the effect of different formulation variables (surfactant type and HLB value) adopting full factorial design (51. 21) using coacervation phase technique on in vitro characterization of dorzolamide hydrochloride (DZ)-loaded proniosomal gels, namely, entrapment efficiency percentage (EE%), vesicle size distribution, polydispersion index (PDI), and in vitro DZ release. The optimum formula F2 with a desirability value of 0.937 composed of 40 mg DZ, 500 mg span 60, 500 mg of L-α-Lethicin, and 55.5 mg cholesterol showing EE% of 84.5 ± 1.5%, PS of 189.5 ± 35.76 nm with PDI 0.8 ± 0.28 and 58.51% ± 1.00 of DZ released after 8 h was further evaluated using differential scanning calorimetry (DSC) and transmission electron microscopy (TEM). The effect of gamma sterilization on transcorneal permeation and stability of DZ from the selected formulation (F2) revealed that F2 was significantly tolerable, stable, and competent to corneal permeation confirmed by histological examination, confocal laser microscopy, and intraocular pressure (IOP) measurement. Significant corneal bioavailability was attained from formula F2 (370.6 mg. h/m) compared to the market product Trusopt® eye drops (92.59 mg. h/ml) following IOP measurement, thereby proniosomal gels could be considered as tolerable and competent ocular platforms for improving the transcorneal permeation of DZ.


Assuntos
Córnea/metabolismo , Glaucoma/tratamento farmacológico , Sulfonamidas/administração & dosagem , Tiofenos/administração & dosagem , Animais , Composição de Medicamentos , Estabilidade de Medicamentos , Raios gama , Géis/química , Lipossomos/química , Masculino , Permeabilidade , Coelhos , Esterilização , Sulfonamidas/farmacocinética , Tiofenos/farmacocinética
11.
J Liposome Res ; 29(3): 283-290, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30501429

RESUMO

Acne vulgaris is the most common dermatological disorder affecting millions of individuals. Acne therapeutic solutions include topical treatment with retinoic acid (RA) which showed a good efficacy in treatment of mild and moderate cases. However, the high prevalence of adverse events, such as skin dryness, shedding and skin irritation affects the patient convenience and obstruct the acne treatment. Thus, the objective of this paper was to produce Span 60 based elastic vesicles enriched with penetration enhancers, and study their influence on the delivery of RA and its skin irritation. RA-loaded nanovesicles, enriched with Transcutol®/Labrasol®, were made using the thin film hydration technique, and assessed for entrapment efficiency, particle size and zeta potential. The optimized RA-loaded nanovesicles (composed of Span 60-Tween 20, and Transcutol®) were morphologically assessed via transmission electron microscopy. Moreover, RA deposition into newborn mice skin was assessed in vitro under non-occlusive conditions, where the optimized RA-loaded nanovesicles showed 2-fold higher RA deposition in the skin compared to the corresponding one lacking Transcutol. The optimized RA-loaded nanovesicles incorporated into 1% carbopol gel was evaluated for in-vivo clinical performance in acne patients, and showed appreciable advantages over the marketed formulation (Acretin®) in the treatment of acne regarding skin tolerability and patient's compliance.


Assuntos
Acne Vulgar/tratamento farmacológico , Fármacos Dermatológicos/administração & dosagem , Lipossomos/química , Pele/metabolismo , Tretinoína/administração & dosagem , Administração Tópica , Adolescente , Adulto , Animais , Fármacos Dermatológicos/química , Fármacos Dermatológicos/metabolismo , Etilenoglicóis/química , Glicerídeos/química , Hexoses/química , Humanos , Camundongos , Nanopartículas/química , Polissorbatos/química , Absorção Cutânea , Tretinoína/química , Tretinoína/metabolismo
12.
Int J Pharm ; 549(1-2): 249-260, 2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-30077759

RESUMO

Development of efficient ocular drug delivery system for antifungal drugs becomes a must nowadays to face and eradicate the widely spread ophthalmic fungal infections. Itraconazole, a triazole antifungal, is struggling to penetrate the cornea and subsequently, its efficacy is limited. The aim of this study was to enhance itraconazole corneal penetration through utilizing the minimum surfactant amount in presence of ß-cyclodextrin which acted as a dissolution and permeation enhancer. ß-Cyclodextrin consolidated micellar dispersions (CCMD) were prepared after an initial screening to select the composition of surfactant(s). The preparation was done according to a modified melt dispersion technique. The prepared CCMD were characterized through the analysis of their particle size, zeta potential and solubilization efficiency. The optimum formula was chosen based on a factorial response surface analysis and it was composed of 17:1 w/w surfactant/drug, 30:1 w/w cyclodextrin/drug ratios and 0.02% polyethylene oxide. This formula was subjected to in vitro characterization including release, imaging by transmission electron microscope, mucoadhesion, stability, in addition to the determination of the minimum inhibitory concentration. Moreover, the ex vivo/in vivo permeation, safety and efficacy profiles were determined. The optimized CCMD formula was found to be significantly safe, stable, mucoadhesive and efficient to permeate the drug through rabbits' corneas. Consequently, the optimized CCMD formulation can be a promising, safe and efficient platform for the transcorneal delivery of lipophilic drugs including most antifungals.


Assuntos
Antifúngicos/administração & dosagem , Aspergilose/tratamento farmacológico , Córnea/efeitos dos fármacos , Excipientes/química , Infecções Oculares Fúngicas/tratamento farmacológico , Itraconazol/administração & dosagem , Ceratite/tratamento farmacológico , Absorção Ocular , beta-Ciclodextrinas/química , Adesividade , Administração Oftálmica , Animais , Antifúngicos/química , Antifúngicos/metabolismo , Aspergilose/metabolismo , Aspergilose/microbiologia , Aspergillus niger/efeitos dos fármacos , Aspergillus niger/crescimento & desenvolvimento , Córnea/metabolismo , Córnea/microbiologia , Modelos Animais de Doenças , Composição de Medicamentos , Liberação Controlada de Fármacos , Infecções Oculares Fúngicas/metabolismo , Infecções Oculares Fúngicas/microbiologia , Itraconazol/química , Itraconazol/metabolismo , Ceratite/metabolismo , Ceratite/microbiologia , Masculino , Micelas , Tamanho da Partícula , Permeabilidade , Coelhos , Solubilidade , Tecnologia Farmacêutica/métodos
13.
Eur J Pharm Sci ; 115: 352-361, 2018 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-29407555

RESUMO

This study aimed to formulate suitable nanovesicles (NVs) for transdermal delivery of Ondansetron. It also illustrated a practical example for the importance of Box-Cox transformation. A 23 full factorial design was used to enable testing transfersomes, ethosomes, and transethosomes of Ondansetron simultaneously. The independent variables (IVs) studied were sodium taurocholate amount, ethanol volume in hydration medium and sonication time. The studied dependent variables (DVs) were: particle size (PS), zeta potential (ZP) and entrapment efficiency (EE). Polynomial equations were used to study the influence of IVs on each DV. Numerical multiple response optimization was applied to select an optimized formula (OF) with the goals of minimizing PS and maximizing ZP absolute value and EE. Box-Cox transformation was adopted to enable modeling PS raised to the power of 1.2 with an excellent prediction R2 of 1.000. ZP and EE were adequately represented directly with prediction R2 of 0.9549 and 0.9892 respectively. Response surface plots helped in explaining the influence of IVs on each DV. Two-sided 95% prediction interval test and percent deviation of actual values from predicted ones proved the validity of the elucidated models. The OF was a transfersomal formula with desirability of 0.866 and showed promising results in ex-vivo permeation study.


Assuntos
Portadores de Fármacos/química , Nanopartículas/química , Ondansetron/administração & dosagem , Ondansetron/química , Pele/metabolismo , Administração Cutânea , Animais , Química Farmacêutica/métodos , Sistemas de Liberação de Medicamentos/métodos , Feminino , Tamanho da Partícula , Permeabilidade/efeitos dos fármacos , Ratos , Ratos Wistar , Absorção Cutânea/efeitos dos fármacos
14.
J Liposome Res ; 28(3): 182-192, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28480807

RESUMO

This study aimed to prepare, optimize and characterize novel felodipine-loaded polymeric nanomicelles, using a pluronic mixture of F127 and P123. Thin-film hydration method was adopted for the preparation of different polymeric nanomicelles (T1-T12) according to a 41.31 full factorial design. Factors studied were: Pluronic®:drug ratio (P:D ratio) (10, 20, 30 and 40 w/w) and percent of hydrophilic polymer (F127%) (33.33%, 50% and 66.67% w/w). Optimization criteria were to maximize transmittance percent (T%) and entrapment efficiency percent (EE%) and to minimize particle size (PS) and polydispersity index (PDI). The optimized formulation was further characterized by DSC, FTIR and 1H NMR studies. It was also subjected to stability testing and ex vivo permeation using rabbit intestines. Spherical nanomicelles of particle size ranging from 26.18 to 87.54 nm were successfully obtained. The optimized formulation was found to be the already prepared formulation T12 (P:D ratio of 40 and 66.67% F127) with suitable T% and EE% of 95.12% and 91.75%, respectively. DSC, FTIR and 1H NMR studies revealed felodipine (FLD) incorporation within T12 nanomicelles. T12 enhanced the ex vivo intestinal permeation of FLD when compared to a drug suspension and showed good stability. Therefore, pluronic nanomicelles could be promising for improved oral delivery of FLD.


Assuntos
Portadores de Fármacos/química , Felodipino/administração & dosagem , Felodipino/química , Nanopartículas/química , Poloxâmero/química , Animais , Liberação Controlada de Fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Absorção Intestinal/efeitos dos fármacos , Micelas , Tamanho da Partícula , Permeabilidade , Coelhos , Propriedades de Superfície
15.
Int J Nanomedicine ; 12: 7947-7962, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29133980

RESUMO

Ocular drug delivery systems suffer from rapid drainage, intractable corneal permeation and short dosing intervals. Transcorneal drug permeation could increase the drug availability and efficiency in the aqueous humor. The aim of this study was to develop and optimize nanostructured formulations to provide accurate doses, long contact time and enhanced drug permeation. Nanovesicles were designed based on Box-Behnken model and prepared using the thin film hydration technique. The formed nanodispersions were evaluated by measuring the particle size, polydispersity index, zeta potential, entrapment efficiency and gelation temperature. The obtained desirability values were utilized to develop an optimized nanostructured in situ gel and insert. The optimized formulations were imaged by transmission and scanning electron microscopes. In addition, rheological characters, in vitro drug diffusion, ex vivo and in vivo permeation and safety of the optimized formulation were investigated. The optimized insert formulation was found to have a relatively lower viscosity, higher diffusion, ex vivo and in vivo permeation, when compared to the optimized in situ gel. So, the lyophilized nanostructured insert could be considered as a promising carrier and transporter for drugs across the cornea with high biocompatibility and effectiveness.


Assuntos
Córnea/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Nanoestruturas/administração & dosagem , Nanoestruturas/química , Administração Oftálmica , Animais , Liberação Controlada de Fármacos , Liofilização , Géis , Lipídeos/química , Masculino , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Modelos Estatísticos , Tamanho da Partícula , Coelhos , Reologia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...